

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 25 :-
www.indianscienceresearch.com Article - 3

Research output for the designing of commonsense

programming language for the views of Logtalk

Dr. Paulo Jorge Lopes de Moura
Assistant Professor, Departamento de Inform´atica.

Universidade da Beira Interior,

Dr. Abel Jo˜ao Padr˜ao Gomes
Assistant Professor, Department of Informatics,

University of Beira Interior, France.

Abstract

Logtalk may be defined as a multi-paradigm language that helps logic application,

item-orientated programming, and event-pushed programming. However, Logtalk purpose

turned into no longer to best guide those programming paradigms but to combine them. The

mixing changed into made by using; first, reinterpreting item standards within the context

of logic programming and, 2nd, via reinterpreting event concepts inside the context of item-

orientated programming. The prolog is a niche language. There are, of course, many

reasons for the present day country of good judgment programming in general, and Prolog

specially. Although, sociologic and political motives aside, Prolog technical handicaps,

together with the inexistence of popular libraries, popular foreign language interfaces, and

powerful encapsulation mechanisms, make it an uphill battle to apply the language and the

good judgment programming paradigm for coaching, discovering, or business software

program development.

 This starts off evolved via evaluating Logtalk as a Prolog item-orientated extension and

as an interpreter, interactive object-orientated programming language. Secondly, the relevance

of occasion-driven programming within the context of item oriented languages is described.

Thirdly, class-primarily based composition, and its assist for issue-based programming, is

summarized. Fourthly, Logtalk native assist for mirrored image is tested. Then, the Logtalk

help for automated software documentation is supplied. Next, the experience of the use of

Logtalk in the school room is described, followed with the aid of a few information at the

Logtalk distribution numbers. Ultimately, the roadmap for destiny improvement is provided.

Key Word: Logtalk, Roadmap, Logic programming, Prolog technical, item-orientated

programming, event-pushed programming.

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 26 :-
www.indianscienceresearch.com Article - 3

Introduction

Why growing Logtalk? The closing answer is, of route, for the a laugh of it. But,

some readers might count on a unique type of solution. There are a number of reasons,

outcome of the modern-day state of affairs of both common sense programming and item-

oriented programming.

Concerning good judgment programming, Prolog, its maximum considerable

language, born in 1972 still lacks a popular library and a function set appropriate for

programming inside the huge. The primary Prolog ISO popular. Concerning the core

components of the language, turned into published in 1995, and is being followed at a

sluggish tempo through the Prolog network. The second one ISO fashionable. Concerning

the module system, turned into posted in 2000 and is being basically not noted by

maximum of the Prolog community. Lengthy long gone are the days of the japanese fifth

generation pc system venture targeted on the guarantees of common sense programming

because the silver bullet. Nowadays, Prolog is a niche language. Logic became dropped as

a programming paradigm from the first draft of the 2001 ACM/IEEE computer technology

Curricula and turned into best re-brought within the curricula very last document after a

great deal pressure from the good judgment programming community. There are, of course,

many reasons for the present day country of good judgment programming in general, and

Prolog specially. Although, sociologic and political motives aside, Prolog technical

handicaps, together with the inexistence of popular libraries, popular foreign language

interfaces, and powerful encapsulation mechanisms, make it an uphill battle to apply the

language and the good judgment programming paradigm for coaching, discovering, or

business software program development.

Concerning item-oriented programming, the sector is strongly biased closer to

magnificence- based totally structures and the particular implementation of item-oriented

principles in a few languages, considerably, C++ and Java. These languages, like another

language, constitute a selected set of design selections on how to implement large item-

orientated ideas.

Defining a brand-new item

we are able to define a brand new object in the same way we write Prolog code: via

using a textual content editor. Item code (directives and predicates) is textually

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 27 :-
www.indianscienceresearch.com Article - 3

encapsulated among Logtalk directives: object/1-five and cease object/zero. The best object

might be a self-contained prototype, no longer depending on some other Logtalk entity:

:- object(Object).

...

:- end_object.

The first argument of the opening directive is the object identifier. Object identifiers

can be atoms or compound terms1. Objects share a single namespace with and categories.

Prototype hierarchies

Prototype hierarchies are constructed by defining extension relations between

objects. To define an object as an extension of one or more objects we will write:

:- object(Prototype,

extends(Parents)).

...

:- end_object.

The sequence of the parent prototypes in the object-opening directive determines the

lookup order for predicate inheritance. The lookup is performed using a depth-first strategy.

Class hierarchies

Class hierarchies are constructed by defining instantiation and specialization relations

between objects. To define an object as an instance of one or more classes, we will write:

:- object(Object),
instantiates(Classes)).

...

:- end_object.

To define a class as a specialization of one or more classes (its superclass), we will

write:

:- object(Class,

specializes(Superclass
es)).

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 28 :-
www.indianscienceresearch.com Article - 3

...

:- end_object.

If we are defining a reflexive system where every class is also an object, we will

be using the following pattern:

:- object(Class,
instantiates(Metaclasse
s),

specializes(Superclass
es)).

...

:- end_object.

Compiling objects

A stand-alone object is always compiled as a prototype, that is, a self-describing

object. If we want to use classes and instances, then we will need to specify at least an

initialization or a specialization relation. The best way to accomplish this is to define a set

of objects that provides the basis of a reflective system. If a reflective system solution is not

necessary, but we still want to construct class hierarchies, then we can simply turn a class

into an instance of itself or, in other words, turn a class into its own metaclass. For

example:

:- object(root,

instantiates(root)).

...

:- end_object.

An alternative solution would be to add a predefined root class to Logtalk, and then

to use that class as the default root class when defining class-based hierarchies. However, it

is a Logtalk design choice not to specify any predefined entities in order to keep the

language simple and unbiased to particular solutions. We can always use an entity library if

necessary.

Creating a new object at runtime

An object can be dynamically created at runtime by using the Logtalk built-in

predicate create object/4:

| ?- create object(Object, Relations, Directives, Clauses).

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 29 :-
www.indianscienceresearch.com Article - 3

The first argument, the identifier of the new object (a Prolog atom or compound

term), must not match any existing entity identifier. The second argument corresponds to

the relations described in the opening object directive. The third and fourth arguments are

lists of directives and predicate clauses, respectively. For example, the following call:

| ?- create object(o1, [extends(o2)], [public(p/1)], [p(1), p(2)]).

is equivalent to compiling and loading the object:

:- object(o1,

extends(o2)).

:- dynamic.

public(p/1).

p(1).

p(2).

:- end_object.

If we need to create many (dynamic) objects at runtime, then it is better to define a

metaclass or a prototype with a predicate that calls this built-in predicate in order to create

new objects. This predicate may provide automatic generation of object identifiers and

accept object initialization options. The current Logtalk implementation contains example

classes defining such predicates in its library.

Object initialization

We can define a goal to be executed as soon as an object is (compiled and) loaded in

memory with the initialization/1 directive:

:- initialization(Goal).

The initialization goal can be any valid Prolog or Logtalk call. For example, the

goal can be a call to a locally defined predicate:

:- object(foo).

:- initialization(init).

:-
private(init/0).
init :-

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 30 :-
www.indianscienceresearch.com Article - 3

... .

...

:- end_object.

or a message to other object:

:- object(assembler).

:- initialization(control::start).

:- end_object.

The ::/2 operator is used in Logtalk for message sending. The initialization goal can

also be a message to self in order to call an inherited predicate. Assuming, for example, that

we have an object named profiler defining a reset/0 predicate, we could write:

:-

object(stopwat
ch,
extends(profiler
)).

:- initialization(::reset).

...

:- end_object.

The ::/1 operator is used in Logtalk for sending a message to self. Note that, in this

context, self denotes the object containing the directive.

Descendant objects do not inherit initialization directives from ancestor objects. In

addition, note that by initialization we do not necessarily mean setting an object’s dynamic

state.

Object dependencies

In addition to the relations declared in the object-opening directive, the predicate

definitions contained in the object may imply other dependencies. These can be

documented by using the directives calls/1 and uses/1.

The calls/1 directive can be used when a predicate definition sends some message

that is declared in a specific protocol:

:- calls(Protocol).

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 31 :-
www.indianscienceresearch.com Article - 3

When a predicate definition sends a message to a specific object, this dependence

can be declared with the directive uses/1:

:- uses(Object).

These two directives may be used by the Logtalk runtime engine to ensure that all

necessary entities are loaded when running an application. The directive uses/1 is also the

basis for a planned extension of the Logtalk language to support object namespaces.

Object documentation

An object can be documented with arbitrary user-defined information by using the

directive info/1:

:- info(List).

Assuming, for example, that we have defined an object containing list predicates, it

could be documented as follows:

:- info([

version is 1.0,

author is ’Paulo
Moura’, date is
2000/7/24,

comment is ’List predicates.’]).

Finding defined objects

We can enumerate, using backtracking, all defined objects by calling the Logtalk

built-in predicate current object/1 with a non-instantiated variable:

| ?- current_object(Object).

This predicate can also be used to test whether an object is defined by calling it with

a valid object identifier (either an atom or a compound term).

Towers of Hanoi

This example shows how to use an object to encapsulate a solution for the well-

known ―Towers of Hanoi‖ problem. The object will be a self-contained prototype with its

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 32 :-
www.indianscienceresearch.com Article - 3

interface resuming to a single predicate whose argument will be the number of disks for

which we want to solve the problem:

:- object(hanoi).

:- public(run/1).

run(Disks) :-

move(Disks, left, middle, right).

move(1, Left, _, Right):-

!,

report(Left, Right).

Move

(Disks, Left, Aux, Right):-

Disks2 is Disks - 1,

move(Disks2, Left, Right,

Aux), report(Left, Right),

move(Disks2, Aux, Left,
Right).

report(Pole1, Pole2):-

write(’Move a disk from ’),

writeq(Pole1), write(’ to ’), writeq(Pole2), write(’.’),

nl.

:- end_object.

Note that, if we remove the Logtalk directives (the opening and closing object

directives, and the predicate directive), the remaining code consists of Prolog-compliant

predicate clauses. This is an important feature of Logtalk: Prolog code can be easily

encapsulated by Logtalk objects with little or no modifications.

After compiling and loading this object, we can test our code by sending the message

run/1 to the object. Message sending is performed using the infix operator: :/2. An example

call will be:

?- hanoi::run(3).

Move a disk from left to right.

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 33 :-
www.indianscienceresearch.com Article - 3

Move a disk from left to middle.

Move a disk from right to middle.

Move a disk from left to right.

Move a disk from middle to left.

Move a disk from middle to right.

Move a disk from left to right.

yes

This case provides an object solution that is essentially equal to a module answer. In

addition, it illustrates how, in Logtalk, we will easily outline stand-alone objects that are

not connected to any hierarchy, as in any prototype-based totally language.

Logtalk integration of lessons and prototypes in a unmarried language lets in us to

use the identical message sending mechanisms and the equal techniques for dynamically

growing, disposing, and enumerating items. Despite the fact that we can not blend

prototypes with training and instances inside the same hierarchy, we will freely change

messages among them.

Logtalk prototypes may be used as a replacement for modules in Prolog programs,

imparting several vital capabilities now not available in modern-day Prolog module

structures. Particularly, prototypes offer data hiding, a function missing in module systems.

In addition, Logtalk affords a degree of compatibility with Prolog compilers now not

matched by using any module machine. This makes a Logtalk program lots greater portable

than a Prolog program that makes use of modules.

Category-based totally composition

Classes are the premise of issue-based programming in Logtalk. Classes seasoned- vide

finer, functionally cohesive units of code that may be imported via any object. For this reason,

categories play a role twin to that one performed via protocols for interface encapsulation.

Similarly, classes provide several improvement benefits such as incremental compilation,

updating an item — with out recompiling it — through updating its imported classes, and

refactoring of complicated items into greater possible and reusable elements. Category-

primarily based composition, inheritance, and instance variable-based composition offer

complementary sorts of code reuse. Categories put into effect a composition mechanism where

a category interface becomes a part of the interface of an object uploading it. This is in

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 34 :-
www.indianscienceresearch.com Article - 3

contrast to example variable-primarily based composition, however similar to what takes place

with inheritance. Logtalk aid for public, protected, and private category importation affords

similarly flexibility. By means of applying the concepts of separation of worries common to

element-primarily based programming processes, classes provide opportunity answers to

multi-inheritance designs that can be implemented inside the context of single inheritance

languages.

Logtalk as a Prolog item-orientated extension

Logtalk reinterprets the concept of item as a hard and fast of predicate directives

(declarations) and clauses (definitions). Consequently, message sending is reinterpreted as

evidence creation the usage of the predicates defined for the receiving item. Inheritance

mechanisms allow us to define the complete database of an item. A method is then clearly

the predicate definition decided on from an object entire database so one can answer a

message. Through reinterpreting the principles of object, message, and technique in

common sense programming phrases, a simple mapping is set up among Logtalk semantics

and the acquainted Prolog semantics.

In trendy terms, this reinterpretation of object standards is shared via maximum

Prolog item-oriented extensions. To assess and evaluate Logtalk with other item-orientated

extensions and Prolog module structures, the following standards could be used:

compatibility with Prolog compilers, language syntax, interpretation of the concept of item,

feature set, and working environment

Logtalk compatibility

Logtalk is the best Prolog object-orientated extension available these days that has

been de- signed from scratch for compatibility with maximum compilers and with the ISO

Prolog popular. This layout intention sets it aside from other Prolog extensions. The

preprocessor answer followed for the Logtalk implementation lets in it to run on most

computer systems and working structures for which a present-day Prolog compiler is

available. Especially, the contemporary Logtalk version is compatible with thirty-one

versions of twenty Prolog compilers.

Logtalk syntax

Logtalk makes use of, whenever feasible, popular Prolog syntax, and defines

fashionable language constructs, consistent with the cutting-edge practice and expectancies

of Prolog programmers. This facilitates to easy the mastering curve for Prolog

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 35 :-
www.indianscienceresearch.com Article - 3

programmers. That is extra than a syntactic sugar difficulty. As an example, Logtalk allows

existing Prolog code to be encapsulated in gadgets without any modifications. Best when a

predicate needs to call different object predicates, would minimum adjustments be required.

For this reason, clean conversion of vintage Prolog packages is ensured.

The position of objects in logic programming

The primary motive of objects in Logtalk is the encapsulation and reusing of code,

for that reason decoupling this functionality from the theoretical troubles of dynamic nation

alternate in common sense programming. As such, Logtalk affords a realistic view, rather

than a theoretical view, of the role of gadgets in logic programming in fashionable, and in

Prolog in particular. Via focusing at the encapsulation and code reuse proprieties of items,

Logtalk objectives to be an effective device for fixing software program engineering

troubles in Prolog programming.

Implementation solutions for object-orientated standards

Logtalk shows how to put into effect the principle object-oriented ideas in Prolog.

Those encompass ideas no longer discovered in my view on most Prolog item-oriented

extensions along with: support for each classes and prototypes; met instructions; protocols

and protocol hierarchies; public, protected, and personal predicates; and public, protected,

and personal inheritance. Consequently, Logtalk is in all likelihood one of the most whole

Prolog object-orientated ex- anxiety available today. Further, Logtalk indicates the way to

implement other essential ideas that aren't to be had on other object-oriented languages,

such as classes and event-pushed programming. In contrast to other item-oriented

extensions which are both proprietary or depend closely on the specifics of the native

module systems, Logtalk implementation solutions are absolutely well suited with any

compiler that complies with the element I of the ISO Prolog trendy.

Gadgets as a substitute for modules

Logtalk objects offer an alternative to using Prolog modules, either as implemented

in maximum Prolog compilers or as specified within the part II of the ISO Prolog popular.

Like Prolog modules, Logtalk prototypes can be defined as stand-on my own encapsulation

entities. Similarly, although Logtalk does not provide a right away replacement for module

import and export directives, the extension relation between prototypes, together with

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 36 :-
www.indianscienceresearch.com Article - 3

protocol implementation and class importation relations, lets in equivalent

characteristically. Logtalk items have numerous vital benefits over Prolog modules:

Logtalk predicate scope directives make sure statistics hiding, a missing function in

the ISO widespread for Prolog modules. Logtalk message sending mechanism, built-in

methods, and built-in predicates enforce predicate scope directives. The ISO well known

specifies that any module predicate may be called the usage of explicit module

qualification; it considers that mechanisms to put into effect facts hiding are

implementation-established features.

Compatibility with current Prolog compilers.

Logtalk is well suited with nearly all contemporary Prolog compilers. The ISO well

known for Prolog modules is still to being followed by means of most Prolog providers, in

component due to differences with current and broadly used module structures. The ISO

trendy specifies incompatible approaches of affirming met predicates. No such nuisances

exist in Logtalk. A few matters cannot be special within a general and must be considered

as implementation established capabilities. The syntax for maintaining met predicates is

certainly now not one of them. Logtalk provides a number of treasured capabilities inside

the improvement of big-scale tasks, which can be outdoor the scope of module structures.

Those include predicate reuse and specialization via inheritance and composition, occasion-

driven programming, mirrored image, and automatic era of documentation.

Operating environment and other sensible matters

Logtalk operating surroundings is constrained to the subset of common functions of

the well-matched Prolog compilers. As an instance, there's no commonplace set of

predicates for operating gadget access (so limiting the functionality of the Logtalk

compiler) or a common general for building graphical consumer interfaces. Proprietary

object-oriented extensions, developed to paintings with a single Prolog compiler, are

capable of provide richer operating surroundings, taking advantage of precise functions of a

compiler and its web hosting operating gadget. Although, within its compatibility

regulations, Logtalk tries to provide a studying and working environment just like different

Prolog compilers and object-oriented extensions that use textual content-primarily based

development gear. For modifying supply files, the present day Logtalk distribution includes

syntax-coloring configuration files for famous textual content editors, together with textual

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 37 :-
www.indianscienceresearch.com Article - 3

content templates for defining new entities and entity predicates. This improves the

programming revel in, especially by helping to avoid syntax mistakes when writing entity

and predicate directives. Additionally blanketed are a number of programming examples

and great documentation, which comprises a consumer manual, a reference manual, and

programming tutorials.

Out of doors the educational international, those practical subjects are as critical

because the technical features and medical achievements of the language itself. As such,

they're fundamental in building a consumer network, who will use the Logtalk language as

a device to solve real troubles.

Logtalk as an item-orientated programming language

Logtalk extends Prolog, in the equal way as CLOS extends LISP or objective-C

extends C. As a programming language in its personal proper, Logtalk shares features with

common object-orientated languages. But, there are also some crucial differences because

of its Prolog roots. The maximum large one is that Logtalk eliminates a few dichotomies

deeply established on maximum item-oriented languages. Those dichotomies are frequently

used as a manner of characterizing and classifying item-orientated languages. Specially,

Logtalk makes no difference among variables and methods, allows maximum language

elements to be both dynamic or static, and integrates classes and prototypes within the

identical language. In spite of the primary factors are summarizing right here. Unlike

Logtalk, almost all item-oriented languages are strictly described as both magnificence-

based or prototype-based totally languages. Most of them are characterized by way of a

clean distinction among variables and techniques, what is static and what's dynamic, and

what need to be carried out at compile time or may be performed at runtime.

Predicates as both variables and methods

Logtalk item predicates unify the concepts of item strategies and object variables,

therefore simplifying the language semantics. Predicates remove the dichotomy among

nation and conduct: a predicate really states what's actual about an object. Predicates may

be used to implement both variables and techniques, but the sort of difference is continually

elective. It follows that we now not want separate definition, inheritance, and scope

regulations for kingdom and conduct. Further, each nation and conduct can be effortlessly

shared along inheritance hyperlinks or described regionally. This lets in us, as an instance,

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 38 :-
www.indianscienceresearch.com Article - 3

to outline methods in instances and to percentage object nation easily among descendant

gadgets with out the want of first formalizing principles which includes shared example

variables.

Static and dynamic language factors

Logtalk gadgets, protocols, classes, and predicates may be both dynamic or static.

Predicates can be asserted into, and abolished from each static and dynamic gadgets at

runtime. Gadgets, protocols, and categories can be described both in a supply file or created

dynamically at runtime. If contained in a supply report, they may be defined as both static

or dynamic entities. As such, we aren't restrained, for example, to define classes as static

entities and times as runtime-best objects. We may also define an instance in a supply

document within the identical way as a category may be defined. This is constant with

Logtalk number one view of objects as encapsulation devices.

Support for each prototypes and classes

Logtalk is a neutral, impartial language, supporting each prototype-based totally and

class- primarily based programming. We can use each kinds of objects at the equal time and

freely trade messages among them. Logtalk instructions, times, and prototypes are sim- ply

items — encapsulation entities — characterized through special rulesets for gaining access to

their personal predicates and for reusing predicates inherited from different gadgets. Lessons

and prototypes share the equal integrated predicates for developing, abolishing, and

enumerating items. Similarly, they proportion the identical built-in techniques for dynamic

object modification and the message sending mechanisms. Furthermore, protocols may be

implemented, and categories can be imported, by using prototypes, lessons, and instances.

Event-pushed programming

Logtalk presents a conceptual integration of event-pushed programming into the

object- oriented programming paradigm. The important thing for this integration is the

translation of message sending because the best occasion that takes place in an item-

oriented program. Therefore, Logtalk reinterprets the standards of occasion, reveal, event

notification, and occasion handler in terms of objects, messages, and methods. This allows

us to stay in the item- oriented programming paradigm whilst writing event-pushed

programming code.

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 39 :-
www.indianscienceresearch.com Article - 3

Crucial outcomes emerge from Logtalk programming exercise in using occasions to

put into effect complicated dependency members of the family between items. These

consequences aren't specific to Logtalk. As an alternative, they apply to most item-

orientated programming languages. First, event-pushed programming is an important

function of object-orientated languages for accomplishing a excessive level of item

cohesion and fending off unnecessary object coupling on packages where object members

of the family imply constraints at the state of taking part gadgets. Dependency mechanisms,

as observed in Smalltalk and in different languages, provide only a partial answer, which

can simplest be used whilst object methods include — or can be modified to contain —

calls to the dependency mechanism techniques. 2nd, activities and monitors need to be

supported as language primitives, incorporated with the message sending mechanisms. That

is an vital requirement from a overall performance point of view, which precludes the

implementation of event-driven programming at the application layer or through language

libraries. Local language aid is fundamental in making occasion-pushed programming an

powerful tool for trouble solving.

Conclusions

Logtalk may be defined as a multi-paradigm language that helps logic application,

item-orientated programming, and event-pushed programming. However, Logtalk purpose

turned into no longer to best guide those programming paradigms but to combine them. The

mixing changed into made by using, first, reinterpreting item standards within the context

of logic programming and, 2nd, via reinterpreting event concepts inside the context of item-

orientated programming.

This starts off evolved via evaluating Logtalk as a Prolog item-orientated extension

and as an interpreted, interactive object-orientated programming language. Secondly, the

relevance of occasion-driven programming within the context of item oriented languages is

described. Thirdly, class-primarily based composition, and its assist for issue-based

programming, is summarized. Fourthly, Logtalk native assist for mirrored image is tested.

Then, the Logtalk help for automated software documentation is supplied. Next, the

experience of the use of Logtalk in the school room is described, followed with the aid of a

few information at the Logtalk distribution numbers. Ultimately, the roadmap for destiny

improvement is provided.

Volume -2, Issue -1, January 2023 International Journal of Indian Science and Research
 ISSN: 2583 -4584

-: 40 :-
www.indianscienceresearch.com Article - 3

Reference:

1. ACM/IEEE. Computer Curricula 2001: extent II — computer technology — Straw- man

Draft. Http://www.Laptop.Org/schooling/cc2001/, March 2000.

2. James Noble, Antero Taivalsaari, and Ivan Moore, editors. Prototype-based seasoned-

gramming - principles, Languages and programs. Springer-Verlag, 1999.

3. Mark J. Stefik, Daniel G. Bobrow, and Ken M. Kahn. Integrating get admission to-orientated

programming into a multiparadigm environment. IEEE software, pages 10–18, January

1986.

4. Adele Goldberg and David Robson. Smalltalk-80 — The language and its implementation.

Series in laptop technological know-how. Addison-Wesley, 1983.

5. Henry Lieberman. The usage of prototypical items to put in force shared behavior in object-

orientated structures. In Meyrowitz [124], pages 189–214.

6. Brad J. Cox and Andrew Novobilski. Object-oriented Programming: An Evolu- tionary

approach. Addison-Wesley, 2nd version, June 1991.

7. Swedish Institute for pc technology. Quintus Prolog domestic page. Http://

www.Sics.Se/isl/quintus/.

8. Common sense Programming pals Ltd. LPA home web page. Http://www.Lpa.Co.United

kingdom / machine. Http://www. Icparc.Ic

9. The XSB research group. XSB home page. Http://xsb.Sourceforge.Net/college of

Melbourne.

10. The Mercury mission: Mu.Ouncesau/studies/mercury/introduction. Http://www.Cs.

11. Squeak.Org. Squeak domestic web page. Http://www.Squeak.Org/ solar Microsystems, Inc.

Java soft internet website. Http://www.Javasoft.Com/.

12. Apple laptop, Inc. Apple pc Technical Documentation: MacOS X Server — basis

Framework lessons, 1999.

13. Yukihiro Matsumoto. Ruby home page. Http://www.Ruby-lang.Org/en/.

14. World extensive web Consortium. Cascading fashion Sheets (css). Http://www.W3.

Org/style/CSS/.

