1331 .. 2000 ...

Dev Thakar,

Quantum Mechanics: From Foundational Principles to Emerging Technologies

Centre of Education, Indian Institute of Teacher Education (IITE), Gandhinagar.

Indrajitsinh Bihola,

Department of Physics, Saurashtra University, Rajkot.

Keval Gadani,

Centre of Education, Indian Institute of Teacher Education (IITE), Gandhinagar.

ABSTRACT

Quantum mechanics, from its origin, altered our comprehension of the microscopic world during the 1900s. This paper explores quantum theory's foundational principles, such as wave-particle duality, superposition, and uncertainty, and traces quantum theory's evolution into modern-day applications like quantum computing, quantum sensing, and quantum communication, quantum metrology. The study highlights present research directions and technological breakthroughs connecting theoretical physics with actual quantum technologies. These advancements have promising transformative impacts across the social, industrial, and scientific domains.

Keywords:

Quantum Mechanics, Superposition, Quantum Computing, Quantum Communication, Foundational Principles, Emerging Technologies

Volume – 4, Issue – 8, August 2025

International Journal of Indian Science and Research

ISSN: 2583-4584

Introduction

• Brief history of quantum mechanics

Quantum mechanics emerged in the early 20th century, or we can say that it was found while trying to solve the phenomenon of blackbody radiation that could not be explained by classical physics.

It all started with Max Planck's quantisation of energy in 1900, and then came Einstein with his photoelectric effect, which introduced the concept of a photon. After that, in 1913, Niels Bohr, with his atomic model, explained that electrons travel in fixed circular paths around the nucleus in quantised orbits. The model explains why elements produce distinct spectra. Then, in 1924, Louis de Broglie gave a hypothesis proposing that particles like electrons also exhibit wave properties. In 1925, Werner Heisenberg gave the first full mathematical framework of quantum mechanics. After two years, he also proposed the "Uncertainty Principle," which is famous by his name, stating that we cannot measure position and momentum simultaneously with precision. In 1926, Erwin Schrödinger introduced a much-famous equation describing wave functions. All this work from 1900 to 1927 worked as the foundation of quantum mechanics for us to get deeper knowledge.

The importance of quantum mechanics lies in its ability to explain the nature at a very small level where we cannot apply classical physics. Quantum physics has revolutionised our thinking and technology. Today, it's just not a theory; it is a vital tool to understand the complexity of our universe and also for future technologies like quantum computing. In short, quantum mechanics has changed our perspective about the universe.

Foundational Principles of Quantum Mechanics

• Wave-particle duality

From the black-body radiation, photoelectric effect, Davisson-Germer, and double-slit experiment, we have acknowledged that particles like electrons, photons, and any other particles behave unlike classical particles and waves. These findings showed that particles can behave as both particles and waves too.

Classical physics cannot explain this phenomenon; for classical physics, this dual nature can in no way be reconciled with it, but not in quantum mechanics. In quantum mechanics, it explains that a particle also behaves like a wave. If we look into the past, in 1801, Young's double-slit experiment showed an interference pattern indicating that light behaves as a wave. A century after that, in 1905, Einstein published the photoelectric effect and proved that light transfers energy in packets (photons). The debate then continued till 1924 when Louis de Broglie proposed that all particles exhibit wave-like properties. Nowadays, we call it wave-particle duality. It depends on the mode of observation; particles change their behaviour on the basis of observation; they can be particles or waves.

• Heisenberg's uncertainty principle

According to classical physics, if we know the initial conditions and force acting on a system, we can determine the exact future behaviour of the system. This means if we know all the initial coordinates like positions \vec{r}_0 , velocity \vec{v}_0 , and all the forces acting on the particle, then position $\vec{r}(t)$ and velocity $\vec{v}(t)$ can be determined easily with the use of Newton's laws. So classical physics is so deterministic in nature.

Does this also apply to quantum mechanics? The answer is no, because in quantum mechanics, a particle is represented by a wave function, and we know that a wave function cannot be localised, meaning microscopic particles are spread over space, opposite to classical particles which can be localised. We have also seen in the double-slit experiment that it is impossible to determine the slit through which the electron went without disturbing it. So the concept of exact momentum and exact position makes no sense in quantum mechanics.

The **Heisenberg Uncertainty Principle**, introduced by Werner Heisenberg in 1927, states that *if the* x-component of the momentum of the particle is measured with an uncertainty Δp_x , then its x-position cannot, at the same time, be measured more accurately than $\Delta x = \frac{\hbar}{2\Delta p_x}$.

Mathematically expressed as:

$$\Delta x \cdot \Delta p \ge \frac{\hbar}{2}$$

This principle explains that it is possible to calculate the position and momentum separately, but we cannot measure both simultaneously with full precision.

• Schrödinger's wave equation

The Schrödinger wave equation, formulated by Erwin Schrödinger in 1926, is the fundamental equation of quantum mechanics. It explains how the wave function ψ of a physical system evolves in space and time. The wave function contains all the information about a system. The square of the wave function's magnitude $|\psi|^2$ it gives the probability density of finding a particle in a given space and time.

There are two forms of Schrödinger's equation

1. Time dependent Equation:

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) = H\psi(\mathbf{r}, t)$$

We use this form when the system changes its state with time. Here H is the Hamiltonian operator representing the total energy of the system.

2. Time-independent Equation:

When the potential energy does not depend on time, the equation becomes

$$H\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

Here H is the Hamiltonian operator and E is the energy constant.

We use the Schrödinger equation to understand phenomena such as atomic spectra, electron orbitals, and tunnelling. In essence, the Schrödinger equation is the core of quantum mechanics, predicting how quantum states evolve.

• Quantum Superposition

ISSN: 2583-4584

Imagine you are at a candy shop and you want to buy one candy. Until you buy any candy, all the candies are there in the box. You can choose any of them, meaning they all are potential candies that you can choose. You could choose mango flavour, orange, or any other out of it. Until you choose one, they all act as possibilities.

Quantum superposition is kind of like that but for subatomic particles like electrons, protons, etcetera. Until we measure them, they aren't in any definite state. Meaning they are not here, not there, they are not spinning up or spinning down. Instead, they are happened to be in a combination of all possible states simultaneously. For example, an electron's position isn't. Fixed until we measure it. Until that electron exists in all possible positions at once, with a certain probability for each position.

It's just not about us knowing the state; it is truly a mixture of all possibilities. Let's think of a spinning coin. When it's in the air, it's neither head nor tail; it's in the superposition of both. We can only decide it is a head or tail when it lands. This act of measurement forces the superposition to collapse into a single state.

Superposition is not just any weird phenomenon; it has been mathematically proven and is the foundation of many technologies. Quantum computers use bits called 'qbits'. Which can be both 0 and 1 at the same time. In short, superposition means that in the quantum world, reality is not fixed; it changes with our observation. If you have found a particle at a certain position and you find it at the exact position after some time, you may not find it there.

• Quantum entanglement:

Quantum entanglement remains as one of the most mysterious as well as deep phenomena existing within quantum mechanics. Because entanglement links multiple particles, Albert Einstein dubbed it "spooky action at a distance". When particles become entangled, their fates link in such a way that they share a single unified quantum state since distance does not separate them.

Picture two entangled coins which happen to be spinning. In the air, they're both spinning within a state of superposition where they're both tails and heads. You instantly know something when one coin stops heads up. That other coin must be tails even if it is across the galaxy. To measure one

is in fact faster than light.

This correlation cannot be broken down and it provides a powerful resource for future technologies.

particle will instantly determine the state of its entangled partner. There is no delay. This correlation

It's the foundation of quantum computing as it allows qubits to perform complex calculations in a

way impossible for classical computers. Quantum cryptography also uses it in order to communicate

with such un-hackable systems and keys the concept of quantum teleportation, from which teleports

no matter, but transfers quantum information to elsewhere. Entanglement's bizarre, non-local nature

distinguishes the quantum world from our everyday experience and holds the key to incredible

technological advancements.

Key Experiment that Shaped Quantum Theory

• Double-slit experiment

A fundamental component of quantum mechanics, the double-slit experiment is well-known for

revealing the peculiar characteristics of atomic and subatomic particles. Its origins can be found in

Thomas Young's light experiment from 1801, which offered strong support for the wave theory of

light. The foundation for comprehending interference patterns was established by Young's initial

experiment, though it did not involve particles in the quantum sense. But when scientists in the 20th

century started experimenting with subatomic particles like electrons, the real quantum weirdness

became visible.

The experiment itself is surprisingly easy. Consider a barrier that has two small openings carved into

it. A screen is placed behind this barrier to observe the results.

Classical Expectation: If you shoot tiny solid particles like tiny cannonballs at slits. You expect them

to go through one slit or the other and form two separate shapes on the screen, one behind each slit.

This is how classical things act.

Wave Behaviour: If you send waves through the slits, like water waves, they would spread out after

going through. This would cause the waves from each slit to mix and interfere with each other. Where

wave crests meet each other, they make the stronger wave, and where a crest meets a trough, they

Volume - 4, Issue - 8, August 2025

International Journal of Indian Science and Research

ISSN: 2583-4584

cancel each other out. When you look at the screen, you would not see two shapes but a pattern of

bright and dark fringes. This is typical of how waves behave.

The Quantum Twist: Amazing things happen when electrons, photons, or even bigger molecules are

fired at the slits one by one. Even though they are separate particles, they don't separate into two

separate shapes. Instead, like waves, they make a pattern on the screen that looks like interference.

This makes us think that each particle somehow goes through both slits at the same time and affects

itself. It's like the particle is in a state of potentialities until it hits the screen.

The most amazing part is when you try to see through which slit the particle goes. As soon as you put

a detector at a slit, the interference pattern goes away, leaving behind two clear shapes. It's like if the

act of observation forced the particle to choose a single path and act like a classical particle. This

phenomenon explains that observations are very important in quantum mechanics. Showing that

particles can act as both waves and particles, depending on how they are seen.

Quantum Technologies: Emerging Applications

Quantum computing:

Quantum computing is the future of computers. Quantum computers use the principles of quantum

mechanics to solve problems that are too much harder for a traditional computer, even a

supercomputer that uses bits.

In the context of traditional computers, quantum computers use bits called "qbits". A qbit is a quantum

bit that can exist in superposition, meaning it can be a 0, a 1, or both at a time. Unlike classical

computers, which can work on only one possibility at a time, quantum computers can work on many

possibilities at a time. Quantum entanglement is the key concept behind the quantum computer, no

matter how far two particles are, the state of one instantly affects the other, and they can work together

to solve the problem because of this ability.

Since quantum computers can do these things, they aren't meant to replace classical computers in

regular use. They are made to do tasks, like simulating molecules to make new drugs, making

Volume -4, Issue -8, August 2025

International Journal of Indian Science and Research

ISSN: 2583-4584

advanced materials, improving financial models. They change the way we think about computation

in a regular way, making it possible to solve problems that current computers cannot solve.

Quantum sensors

Quantum sensors are tools which allow for more accurate results using all of the principles of quantum

mechanics. Normal sensors use classical physics for finding changes, but quantum sensors use

quantum principles. Superposition, entanglement, and quantum coherence are quantum principles the

sensors use to find changes very accurately.

These sensors do fundamentally use photons, ions, atoms, or particles in such special quantum states.

Quantum states are indeed so sensitive that we can measure even such a slight change in variables.

Changes to magnetic fields, gravity, time, or acceleration can be measured. For instance, an atom in

superposition is able to change its state when its surroundings change, even a small change, and it

acts as a supersensitive particle.

These sensors have the capacity for identification of even the smallest of changes, enabling numerous

applications. Quantum magnetometers serve medical diagnostic purposes to measure human brain's

weak magnetic fields or find submarines under the ocean. Quantum clocks using atomic oscillations

provide incredibly accurate timekeeping that GPS relies on. They can also be used in underground

surveying by identifying minute variations in gravity. This aids in the mapping of tunnels, mineral

deposits, and even archaeological sites. Quantum sensors offer essentially a new method to

comprehend and measure our physical world by using quantum mechanics.

• Quantum communication

Using the principles of quantum mechanics rather than conventional electronics, quantum

communication is a method of information transmission. Unbreakable security is its primary promise.

The most popular technique is called quantum key distribution (QKD), in which two individuals

exchange a secret encryption key by delivering photons (light particles) in particular quantum states.

Any attempt by a hacker to eavesdrop will leave observable traces because of the no-cloning theorem

and the fact that measuring a quantum state alters it.

www.indianscienceresearch.com

Quantum internet is the future of networking, which is more secure and different from current systems. It is still in its early stages; researchers have already tested quantum communication through satellites and optical fibres.

Quantum Metrology

It is a field of quantum mechanics that uses fundamental principles of quantum mechanics to make measurements with high precision and sensitivity, which is not achievable through classical methods. It uses subatomic particles as sensors.

The fundamental idea is to harness particles using quantum phenomena like quantum entanglement and superposition. Different from classical sensors, which have a limit on their precision due to noise. Quantum metrology breaks this limit by preparing particles in special quantum states. To illustrate, by entangling a group of atoms, they become more sensitive to any external change in magnetic or electric field.

Today, it's just not a theoretical concept; it is already in use. For instance, atomic clocks use precise quantum vibrations to keep time with incredible accuracy, which is very important for GPS and telecommunications. Additionally, they are also used in medicine. Quantum magnetometers can detect any tiny magnetic field, allowing for high-precision imaging. Quantum metrology is also being used to improve the sensitivity of gravitational wave detectors, pushing the boundaries of the observable universe.

Recent Advances and Research Directions

• Quantum supremacy and ongoing global initiatives (e.g., IBM, Google, QIS)

Quantum supremacy is the point where a quantum computer can solve a problem that classical supercomputers see as nearly impossible. Sycamore, Google's quantum processor, reached a milestone in 2019 by doing a task in 200 seconds. For the same task, thousands of years would have been needed by a supercomputer. IBM disputed that claim later, but the jump ahead in that field has been great.

ISSN: 2583-4584

Quantum technology is rapidly advancing through global efforts. IBM is building powerful quantum computers accessible in the cloud for large-scale fault-tolerant systems. Processors that are quantum and scalable are still being pushed for by Google. Governments as well as research groups are investing heavily to accelerate progress, like the U.S. Quantum Information Science (QIS) Initiative.

These initiatives improve qubit quality, error correction, and practical applications. The race for quantum supremacy beyond speed seeks to unlock capabilities. These capabilities may transform cryptography as well as materials science, including AI and beyond that.

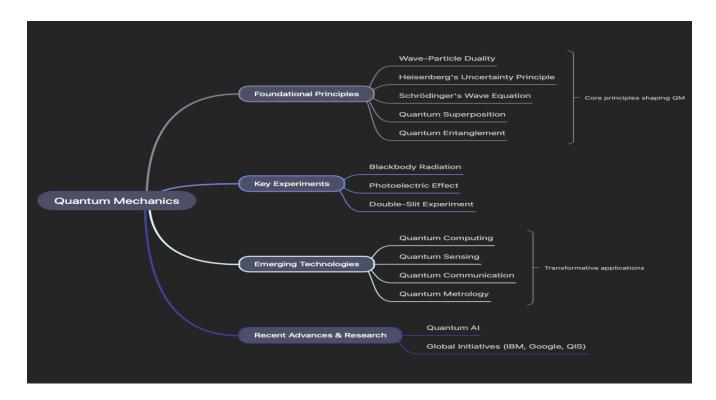
· Quantum AI

Quantum AI combines quantum computing with artificial intelligence because it solves problems faster or more efficiently than classical computers do. Quantum computers use qubits, so 0 and 1 are represented at once with superposition. Entanglement defines their interactions, unlike bits that are classical. This allows them to process through enormous combinations. They are able to do that simultaneously.

AI is able to accelerate pattern recognition, optimisation, and also machine learning tasks. For example, quantum algorithms could be able to handle extremely complex datasets, could train models faster, or could also find better solutions for optimisation problems with which classical AI struggles.

Quantum AI is being explored by companies such as Google and IBM, as well as startups like Xanadu, while hybrid approaches combining quantum processors with classical AI systems are being developed by researchers. In its early stages, large-scale quantum AI is practical because of its enormous capability to reshape drug discovery, logistics, and natural language processing.

Conclusion


From its origins that are in the early 20th century, quantum mechanics has reshaped our comprehension of reality because it challenged the deterministic worldview within classical physics. Planck's quantisation, along with Einstein's photon theory, Bohr's atomic model, de Broglie's matter

waves, Heisenberg's uncertainty principle, and Schrödinger's wave equation are foundational discoveries laying the groundwork for a new scientific framework. The deep role of observation that is in determining outcomes was revealed through key experiments like the double-slit, that confirmed wave-particle duality.

Quantum mechanics supports today's transformative technologies. It is no longer confined by theoretical physics. Quantum computers promise processing within an unprecedented manner, quantum sensors offer unmatched precision, and quantum communication provides security that cannot be broken.

We still encounter difficulties like maintaining coherence, scaling systems, and correcting errors as we research quantum boundaries. Still, the possible gains are enormous since they change sectors, increase research, and grow our grasp of space. Quantum mechanics has proven human curiosity's triumph. This success creates access to new technologies that might challenge what is feasible.

Mind Map:

Fig.1 illustrates the key concepts of Quantum Mechanics, including its foundational principles, experiments, emerging technologies, and recent research.

References:

- [1] Griffiths, D. J., & Schroeter, D. F. (2018). Introduction to Quantum Mechanics (3rd ed.). Cambridge University Press.
- [2] Sakurai, J. J., & Napolitano, J. (2020). Modern Quantum Mechanics (3rd ed.). Cambridge University Press.
- [3] Dirac, P. A. M. (2019 reprint). The Principles of Quantum Mechanics. Oxford University Press.
- [4] Nielsen, M. A., & Chuang, I. L. (2021). Quantum Computation and Quantum Information (20th Anniversary ed.). Cambridge University Press.
- [5] Gribbin, J. (2018). In Search of Schrödinger's Cat: Quantum Physics and Reality. Black Swan.
- [6] Heisenberg, W. (1927, reprinted 2018). The Physical Principles of the Quantum Theory. Dover Publications.
- [7] Arute, F. et al. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574, 505–510. https://doi.org/10.1038/s41586-019-1666-5
- [8] Preskill, J. (2018). Quantum Computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79
- [9] Gyongyosi, L., & Imre, S. (2019). A survey on quantum computing technology. Computer Science Review, 31, 51–71. https://doi.org/10.1016/j.cosrev.2018.11.002
- [10] Biamonte, J. et al. (2017). Quantum machine learning. Nature, 549, 195–202. https://doi.org/10.1038/nature23474
- [11] Bharti, K. et al. (2022). Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics, 94, 015004. https://doi.org/10.1103/RevModPhys.94.015004
- [12] Pirandola, S. et al. (2020). Advances in quantum cryptography. Advances in Optics and Photonics, 12(4), 1012–1236. https://doi.org/10.1364/AOP.361502
- [13] Acín, A., & Masanes, L. (2016). Certified randomness in quantum physics. Nature, 540, 213–219. https://doi.org/10.1038/nature20119
- [14] Awschalom, D. D. et al. (2018). Quantum technologies with optically interfaced solid-state spins. Nature Photonics, 12, 516–527. https://doi.org/10.1038/s41566-018-0232-2
- [15] Degen, C. L., Reinhard, F., & Cappellaro, P. (2017). Quantum sensing. Reviews of Modern Physics, 89, 035002. https://doi.org/10.1103/RevModPhys.89.035002
- [16] Bassett, L. C. et al. (2019). Quantum sensing with NV centres in diamond. Annual Review of Physical Chemistry, 70, 219–246. https://doi.org/10.1146/annurev-physchem-032117-041946

- [17] Zhong, H.-S. et al. (2020). Quantum computational advantage using photons. Science, 370(6523), 1460–1463. https://doi.org/10.1126/science.abe8770
- [18] Wang, J. et al. (2020). Integrated photonic quantum technologies. Nature Photonics, 14, 273–284. https://doi.org/10.1038/s41566-019-0532-1
- [19] Monz, T. et al. (2021). Realization of a programmable quantum computer with trapped ions. Nature, 528, 264–267. https://doi.org/10.1038/nature25797
- [20] Dowling, J. P., & Milburn, G. J. (2019). Quantum Technology: The Second Quantum Revolution. CRC Press.