
Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:1:-

A find out about of a dialogue and making a Logtalk for the

sketch of an Object Oriented Logic Programming Language

By Dr. Paulo Jorge Lopes de Moura, Assistant Professor of the

Department of Informatics of the University of Beira Interior

Dr. Abel Jo ão Padr ão Gomes, Assistant Professor of the Department of

Informatics of the University of Beira Interior

Abstract

This thesis describes the design, implementation, and documentation of Logtalk, an

object-oriented common sense programming language. Logtalk is designed as an extension

to the Prolog common sense programming language offering encapsulation aspects

primarily based on object-oriented concepts. Logtalk primary points encompass help for

each prototypes and training in the equal application, integration of event-driven

programming with object-oriented programming, and category-based code reusing.

Keywords: Logtalk, Prolog, Logic programming, Object-oriented programming,

Event-driven programming

Introduction

Regarding good judgment programming, Prolog, its most full-size language, born

in 1972, nevertheless lacks a fashionable library and a function set appropriate for

programming in the large. The first Prolog ISO standard, regarding the core factors of the

language, used to be published in 1995, and is being adopted at a gradual tempo with the

aid of the Prolog community. The 2nd ISO standard, regarding the module system, was

once posted in 2000 and is being essentially left out via most of the Prolog community.

Long gone are the days of the Japanese fifth Generation Computer System Project, based

on the guarantees of common-sense programming as the silver bullet. Today, Prolog is an

area of interest language. Logic used to be dropped as a programming paradigm from the

first draft of the 2001 ACM/IEEE Computer Science Curricula, and used to be solely re-

http://www.indianscienceresearch.com/

Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:2:-

introduced in the curricula closing document after a great deal stress from the common-

sense programming community.

There are, of course, many motives for the present-day country of good judgment

programming in general, and Prolog in particular. Nevertheless, sociologic and political

motives aside, Prolog technical handicaps, such as the inexistence of fashionable libraries,

widespread overseas language interfaces, and effective encapsulation mechanisms, make

it an uphill struggle to use the language and the common-sense programming paradigm for

teaching, researching, or industrial software program development. Regarding object-

oriented programming, the subject is strongly biased toward class-based structures and the

specific implementation of object-oriented standards in a few languages, notably, C++ and

Java. These languages, like any different language, signify a particular set of plan

selections on how to enforce vast object-oriented concepts.

Integration of common sense and object-oriented programming

Logtalk pursuits to carry collectively the principal blessings of these two

programming paradigms. On one hand, objects enable us to work with the identical set of

ideas in the successive phases of utility development. On the different hand, good judgment

programming lets in us to represent, in a declarative way, our know-how of every object.

Altogether, objects and declarative programming permit us to shorten the distance between

an utility and its hassle domain. Adding objects to Prolog approves us to follow high-level

object-oriented improvement methodologies and metrics to common sense programming.

Objects additionally furnish common sense programming languages, and Prolog,

specifically, with various points wished in large-scale software program projects. In

particular, objects add namespaces to the standard Prolog flat database, offering predicate

encapsulation and information hiding, beautify code reusing trough inheritance and

composition, and, coupled with protocols, supply separation between interface and

implementation.

Support for each prototype-based and class-based systems

http://www.indianscienceresearch.com/

Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:3:-

Almost all object-oriented languages reachable today, are both class-based or

prototype-based with a sturdy predominance of class-based languages. In particular, all

modern-day mainstream object-oriented languages are class-based. However, prototypes

furnish an awful lot higher alternative for Prolog modules than classes. A prototype can be

a stand-alone object, no longer connected to any hierarchy, and consequently a handy

answer to encapsulate code that will be reused with the aid of a number of unrelated objects.

Prototypes are for this reason a herbal improve to the use of modules in functions the place

the ideas of instantiation and specialization of class-based languages do no longer make

sense. For different applications, the types of code reuse underlying the ideas of category

and instance, are the exceptional solution. Each variety of system, with its strengths and

drawbacks, is equally beneficial in the context of an object-oriented common sense

programming language. As such, Logtalk targets to furnish equal aid for lessons and

prototypes, inclusive of runtime guide for each prototype and classification hierarchies in

the identical application. In fact, many Logtalk examples and purposes make use of

prototypes, classes, and situations simultaneously.

Separation between interface and implementation

This is a predicted function of any contemporary high-level programming language.

Logtalk need to furnish help for keeping apart interface from implementation in a bendy

way, enabling an interface to be applied by using more than one objects, and an object to

put into effect more than one interfaces. Surprisingly, this is no longer viable in the modern

ISO trendy for Prolog modules, the place a module consists of a single module interface

and zero or greater corresponding module bodies.

Private, protected, and public object predicates

Logtalk ought to guide statistics hiding via imposing private, protected, and public

object predicates, and via adopting scope regulations frequent to different object-oriented

languages: personal predicates can solely be known as from the container object, covered

predicates can solely be known as from the container object and its descendants, and public

http://www.indianscienceresearch.com/

Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:4:-

predicates can be referred to as from any object. Note that the present-day ISO well known

for Prolog modules does now not aid facts hiding. By the use of specific module

qualification, we can name any module predicate as lengthy as we be aware of its name.

Private, protected, and public inheritance

This is a frequent characteristic of present-day object-oriented languages such as

C++ and Java, and a herbal extension of the predicate scope rules. Logtalk ought to guide

a generalized implementation of private, protected, and public inheritance, enabling us to

hinder the scope of inherited, implemented, or imported predicates.

Compatibility with most Prolog compilers and the ISO standard

Logtalk must be designed to be well matched with most Prolog compilers and,

specifically, with the ISO Prolog standard. It ought to run on most laptop structures

assisting a present-day Prolog compiler. The language sketch has to decrease

implementation-dependent points to make certain vast portability of Logtalk packages

across Prolog compilers and working systems. In fact, Logtalk need to be considered as a

perfect device for writing transportable programs: any operating-system based code can be

encapsulated inner objects imposing in reality described cross-platform protocols.

Logtalk protocol concept

Logtalk protocols encapsulate predicate declarations. Ideally, the declarations ought

to correspond to a functionally cohesive set of predicates. Protocols allow the separation

between interface and implementation: a protocol can be applied with the aid of numerous

objects, and an object can put in force various protocols. Note that, even though summary

lessons and a couple of inheritance, each aspect supported by way of Logtalk, can grant

some of the performance of protocols, this answer can solely be utilized to class-based

hierarchies. In contrast, Logtalk protocols can be applied with the aid of each lessons and

prototypes. An object implements a protocol through offering definitions for the declared

predicates.

http://www.indianscienceresearch.com/

Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:5:-

However, the implementation of a protocol by using an object must be interpreted

in a free sense. An object is no longer required to grant a definition for each and every

protocol declared predicate. As mentioned in a message to an object is legitimate if the

corresponding predicate is declared for the object and in the scope of the sender. If no

predicate definition is determined to reply the message, it actually fails. This semantics can

be considered as a Logtalk reinterpretation of the Prolog closed-world assumption.

Documenting language

Automatic era of documenting archives implies guide each at the language stage

and at the compiler level. At the language level, we have to be in a position to signify

arbitrary data about an entity and its predicates. At the compiler level, all applicable data

need to be parsed, formatted, and written out to a documentation file.

Two frequent examples of automated documenting equipment are Javadoc and

Lpdoc. The first is a well-known device protected in the Java SDK. The 2d is a device for

documenting (C)LP systems, along with Prolog programs. Javadoc makes use of

specifically formatted application feedback to permit the person to specify documenting

information. This ability that two languages will be used when writing programs: one

language for code and every other language for documentation. This is an method shared

with the aid of most literate programming equipment such as CWEB and its offspring’s.

Lpdoc defines a state-of-the-art announcement language that can be considered as an

extension of Prolog, made of a set of directives. In each case, we stop up the usage of two

specific tools: a language compiler and a separate device for extracting software

documentation.

In Logtalk, an essential format choice was once to use the identical language for

each code and documentation. After all, Logtalk is a declarative language. All documenting

data in Logtalk supply documents is expressed the usage of Logtalk directives.

Discussion and Conclusions

http://www.indianscienceresearch.com/

Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:6:-

This affords the most applicable contributions of this thesis, some supplementary

concerns on Logtalk guide for reflection and on the usage of Logtalk in the classroom, as

nicely as the deliberate future improvement of the Logtalk language. Complete and greater

designated conclusions about every language characteristic of are supplied.

Logtalk can be described as a multi-paradigm language that helps common sense

programming, object-oriented programming, and event-driven programming. However,

Logtalk purpose used to be now not to solely guide these programming paradigms however

to combine them. The integration used to be made by, first, reinterpreting object ideas in

the context of common-sense programming and, second, with the aid of reinterpreting

match ideas in the context of object-oriented programming.

This starts through evaluating Logtalk as a Prolog object-oriented extension and as

an interpreted, interactive object-oriented programming language. Secondly, the relevance

of event-driven programming in the context of object-oriented languages is described.

Thirdly, category-based composition, and its guide for component-based programming, is

summarized. Fourthly, Logtalk native guide for reflection is examined. Then, the Logtalk

assist for computerized software documentation is presented. Next, the trip of the usage of

Logtalk in the school room is described, observed by means of some facts on the Logtalk

distribution numbers. Finally, the roadmap for future improvement is presented.

Logtalk as a Prolog object-oriented extension

Logtalk reinterprets the idea of object as a set of predicate directives (declarations)

and clauses (definitions). Thus, message sending is reinterpreted as proof development the

usage of the predicates described for the receiving object. Inheritance mechanisms enable

us to outline the whole database of an object. A technique is then virtually the predicate

definition chosen from an object whole database in order to answer a message. By

reinterpreting the standards of object, message, and approach in good judgment

programming terms, a easy mapping is set up between Logtalk semantics and the

acquainted Prolog semantics.

http://www.indianscienceresearch.com/

Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:7:-

In widely wide-spread terms, this reinterpretation of object principles is shared by

means of most Prolog object-oriented extensions. To consider and evaluate Logtalk with

different object-oriented extensions and Prolog module systems, the following standards

will be used: compatibility with Prolog compilers, language syntax, interpretation of the

thought of object, function set, and working environment.

Logtalk compatibility

Logtalk is the solely Prolog object-oriented extension handy nowadays that has been

de-signed from scratch for compatibility with most compilers and with the ISO Prolog

standard. This graph purpose units it aside from different Prolog extensions. The

preprocessor answer adopted for the Logtalk implementation lets in it to run on most

computer systems and running structures for which, a contemporary Prolog compiler is

available. Specifically, the modern-day Logtalk model is well matched with thirty-one

variations of twenty Prolog compilers.

Logtalk syntax

Logtalk uses, each time possible, general Prolog syntax, and defines dependent

language constructs, in line with the cutting-edge exercise and expectations of Prolog

programmers. This helps to easy the mastering curve for Prolog programmers. This is

greater than a syntactic sugar issue. For example, Logtalk allows current Prolog code to be

encapsulated in objects besides any changes. Only when a predicate wants to name

different object predicates, would minimal modifications be required. Thus, handy

conversion of ancient Prolog packages is ensured.

The position of objects in common sense programming

The foremost reason of objects in Logtalk is the encapsulation and reusing of code,

consequently decoupling this performance from the theoretical troubles of dynamic

kingdom alternate in common sense programming. As such, Logtalk offers a realistic view,

as a substitute than a theoretical view, of the function of objects in common sense

http://www.indianscienceresearch.com/

Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:8:-

programming in general, and in Prolog in particular. By focusing on the encapsulation and

code reuse proprieties of objects, Logtalk targets to be a fine device for fixing software

program engineering issues in Prolog programming.

Implementation options for object-oriented concepts

Logtalk indicates how to enforce the foremost object-oriented standards in Prolog.

These consist of principles no longer located in my view on most Prolog object-oriented

extensions such as: guide for each training and prototypes; metaclasses; protocols and

protocol hierarchies; public, protected, and non-public predicates; and public, protected,

and personal inheritance. Thus, Logtalk is probably one of the most entire Prolog object-

oriented extension on hand today. In addition, Logtalk suggests how to put into effect

different essential ideas that are now not accessible on different object-oriented languages,

such as classes and event-driven programming. Unlike different object-oriented extensions

that are both proprietary or rely closely on the specifics of the native module systems,

Logtalk implementation options are wholly well matched with any compiler that complies

with the Part I of the ISO Prolog standard.

Working surroundings and different realistic matters

Logtalk working surroundings is restrained to the subset of frequent aspects of the

compatible Prolog compilers. For example, there is no frequent set of predicates for

working gadget get right of entry to (so limiting the performance of the Logtalk compiler)

or a frequent standard for developing graphical person interfaces. Proprietary object-

oriented extensions, developed to work with a single Prolog compiler, are in a position to

grant a richer working environment, taking benefit of special elements of a compiler and

its internet hosting operating system. Nevertheless, inside its compatibility restrictions,

Logtalk tries to grant a getting to know and working surroundings comparable to different

Prolog compilers and object-oriented extensions that use text-based improvement tools.

For enhancing supply files, the present day Logtalk distribution consists of syntax-coloring

configuration archives for famous textual content editors, alongside with textual content

http://www.indianscienceresearch.com/

Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:9:-

templates for defining new entities and entity predicates. This improves the programming

experience, in particular by using supporting to avoid syntax blunders when writing entity

and predicate directives. Also covered are a quantity of programming examples and

widespread documentation, which involves a person manual, a reference manual, and

programming tutorials.

Logtalk as an object-oriented programming language

Logtalk extends Prolog, in the equal way as CLOS extends LISP or Objective-C

extends C. As a programming language in its very own right, Logtalk shares points with

frequent object-oriented languages. However, there are additionally some necessary

variations due to the fact of its Prolog roots. The most massive one is that Logtalk

eliminates some dichotomies deeply mounted on most object-oriented languages. These

dichotomies are frequently used as a way of characterizing and classifying object-oriented

languages. Specifically, Logtalk makes no difference between variables and methods, lets

in most language factors to be both dynamic or static, and integrates instructions and

prototypes in the equal language. Despite the first two factors are frequent to some Prolog

object-oriented extensions, they are well worth summarizing here. Unlike Logtalk, nearly

all object-oriented languages are strictly described as both class-based or prototype-based

languages. Most of them are characterized with the aid of a clear difference between

variables and methods, what is static and what is dynamic, and what ought to be finished

at assemble time or can be carried out at runtime.

Predicates as each variables and methods

Logtalk object predicates unify the principles of object techniques and object

variables, consequently simplifying the language semantics. Predicates cast off the

dichotomy between kingdom and behavior: a predicate sincerely states what is genuine

about an object. Predicates can also be used to put in force each variables and methods,

however such a difference is usually optional. It follows that we no longer want separate

definition, inheritance, and scope guidelines for kingdom and behavior. In addition, each

http://www.indianscienceresearch.com/

Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:10:-

nation and conduct can be without problems shared alongside inheritance hyperlinks or

described locally. This permits us, for example, to outline techniques in cases and to share

object country effortlessly amongst descendant objects barring the want of first formalizing

principles such as shared occasion variables.

Static and dynamic language elements

Logtalk objects, protocols, categories, and predicates can be both dynamic or static.

Predicates may additionally be asserted into, and abolished from each static and dynamic

object at runtime. Objects, protocols, and classes can be described both in a supply file or

created dynamically at runtime. If contained in a supply file, they can be described as both

static or dynamic entities. As such, we are now not constrained, for example, to outline

training as static entities and situations as runtime-only objects. We might also outline an

occasion in a supply file in the identical way as a classification may additionally be defined.

This is constant with Logtalk essential view of objects as encapsulation units.

Event-driven programming

Logtalk provides a conceptual integration of event-driven programming into the

object-oriented programming paradigm. The key for this integration is the interpretation of

message sending as the solely match that takes place in an object-oriented program. Thus,

Logtalk reinterprets the principles of event, monitor, match notification, and match handler

in phrases of objects, messages, and methods. This approves us to continue to be inside the

object-oriented programming paradigm when writing event-driven programming code.

Two essential consequences emerge from Logtalk programming exercise in the

usage of activities to put into effect complicated dependency members of the family

between objects. These effects are now not particular to Logtalk. Instead, they follow to

most object-oriented programming languages. First, event-driven programming is an

necessary characteristic of object-oriented languages for accomplishing a excessive degree

of object brotherly love and averting useless object coupling on purposes the place object

members of the family mean constraints on the kingdom of taking part objects.

http://www.indianscienceresearch.com/

Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:11:-

Dependency mechanisms, as located in Smalltalk and in different languages, grant solely

a partial solution, which can solely be used when object strategies include calls to the

dependency mechanism methods. Second, activities and video display units have to be

supported as language primitives, built-in with the message sending mechanisms. This is

an vital requirement from a overall performance factor of view, which precludes the

implementation of event-driven programming at the utility layer or thru language libraries.

Native language aid is essential in making event-driven programming an high-quality

device for hassle solving.

Category-based composition

Categories are the groundwork of component-based programming in Logtalk.

Categories pro-vide finer, functionally-cohesive gadgets of code that can be imported

through any object. Thus, classes play a position dual to that one performed by means of

protocols for interface encapsulation. In addition, classes supply various improvement

advantages such as incremental compilation, updating an object through updating its

imported categories, and refactoring of complicated objects into extra manageable and

reusable parts. Category-based composition, inheritance, and occasion variable-based

composition grant complementary types of code reuse. Categories put into effect a

composition mechanism the place a class interface will become section of the interface of

an object importing it. This is in contrast to occasion variable-based composition, however

comparable to what takes place with inheritance. Logtalk aid for public, protected, and

personal class importation presents similarly flexibility. By making use of the ideas of

separation of issues frequent to component-based programming approaches, classes grant

choice options to multi-inheritance designs that can be utilized in the context of single

inheritance languages.

Logtalk in the classroom

Logtalk is being used at UBI (University of Beira interior) to instruct object-oriented

programming and object-oriented extensions to common sense programming to

http://www.indianscienceresearch.com/

Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:12:-

undergraduate students. Teaching object-oriented ideas, the use of Logtalk has furnished

fascinating results. Common object-oriented languages such as C++ and Java are class-

based. These languages inherit syntax and standards from essential languages such as C.

They re-quire perception ideas such as static versus dynamic allocation, approach argument

and return types, library imports, and important methods, in order to write easy

programming examples. These standards get in the way of instructing key object-oriented

principles like encapsulation, message sending, or inheritance. In contrast, Logtalk objects

encapsulate predicates. There is no want to speak about strategies and variables, or

characteristic and statistics members, earlier than defining a easy predicate and sending the

corresponding message. In addition, the Logtalk guide for each prototypes and lessons

potential that we can educate fundamental object-oriented ideas the use of less difficult

prototype hierarchies earlier than explaining the distinction between training and cases or

between instantiation and specialization mechanisms. There are no main, static, void,

encompass or import keywords cluttering and distracting the scholar from the notion that

a given instance tries to convey, as it occurs in C++ or Java. There is no rich, integrated,

development surroundings whose fundamentals want to be understood and mastered earlier

than easy applications can be written as in Smalltalk. A easy textual content editor suffices.

For college students with a fundamental information of Prolog programming, Logtalk is an

perfect getting to know device for a easy transition from good judgment programming to

object-oriented programming, due to the use of acquainted Prolog syntax and semantics

and to the guide of a broad vary of object-oriented systems.

Logtalk in numbers

In the final two years, Logtalk was once downloaded an common of 270 copies per

month5 (9 copies per day). In addition, Logtalk is dispensed with YAP, an open-source

Prolog compiler. New releases are in ordinary introduced solely in the Logtalk mailing

listing (that is subscribed with the aid of round 70 users) and in the Freshmeat internet web

site (a internet index of cross-platform software, normally open-source products; round 10

customers have subscribed to new Logtalk releases thru this internet site). The Logtalk net

website online is linked from round one hundred net sites, ranging from hyperlinks in

http://www.indianscienceresearch.com/

Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:13:-

private pages to net directories of programming resources. These are modest numbers when

in contrast to the estimated dimension of the Prolog person community. They exhibit that

there is sufficient pastime on Prolog object-oriented extensions to proceed Logtalk

development, however additionally that greater efforts need to be achieved to make bigger

the use of Logtalk.

Reference:

[1] ACM/IEEE. Computer Curricula 2001: Volume II — Computer Science —

Straw-man Draft. http://www.computer.org/education/cc2001/, March 2000.

[2] Bjarne Stroustrup. The C++ Programming Language. Series in Computer Science.

Addison-Wesley, 3rd edition, 1997.

[3] James E. Rumbaugh. Relations as semantic constructs in an object-oriented lan-

guage. In Meyrowitz [122], pages 466–481.

[4] Pattie Maes. Concepts and experiments in computational reflection. In

Meyrowitz [122], pages 147–155.

[5] A. Tanenbaum. Operating Systems — Design and Implementation. Software

Series. Prentice-Hall, 1987.

[6] Henry Lieberman. Using prototypical objects to implement shared behavior in

object-oriented systems. In Meyrowitz [124], pages 189–214.

[7] Francis G. McCabe. Logic and Objects. Series in Computer Science.

Prentice Hall, 1992.

[8] Alan Burning. Classes versus prototypes in object-oriented languages. In Pro-

ceedings of the ACM/IEEE Fall Joint Computer Conference, pages 36–40, Dallas,

Texas, November 1986.

[9] Swedish Institute for Computer Science. Quintus Prolog Home Page. http://

www.sics.se/isl/quintus/.

[10] Eric Borgers. OPL User Manual. http://www.amzi.com/download/freedist_

opl.htm, 2001.

[11] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1st

edition, 1994.

http://www.indianscienceresearch.com/
http://www.computer.org/education/cc2001/
http://www.sics.se/isl/quintus/
http://www.sics.se/isl/quintus/
http://www.amzi.com/download/freedist_opl.htm
http://www.amzi.com/download/freedist_opl.htm

Volume – 1, Issue – 4, October 2022 International Journal of Indian Science and Research

 ISSN: 2583-4584

www.indianscienceresearch.com Article - 1
-:14:-

[12] Dan G. Bobrow, Linda G. Michiel, Richard P. Gabriel, Sonya E. Keene,

Gregor Kiczale, and David A. Moon. Common lisp object system

specification. SIGPLAN Notices, 23, 1988.

[13] Iain Craig. The Interpretation of Object-Oriented Programming Languages.

Springer Verlag, December 1999.

[14] Vitor Santos Costa. YAP Home Page. http://www.cos.ufrj.br/~vitor/Yap/.

[15] Sun Microsystems, Inc. Javasoft web site. http://www.javasoft.com/.

[16] Donald E. Knuth. The literate programming paradigm. Computer Journal,

27(2):97–111, May 1984.

[17] Lisa Friendly. The design of distributed hyperlinked programming documentation.

In International Workshop on Hypermedia Design ’95, 1995.

http://www.indianscienceresearch.com/
http://www.cos.ufrj.br/~vitor/Yap/
http://www.javasoft.com/

